1,612 research outputs found

    Nuclear-size self-energy and vacuum-polarization corrections to the bound-electron g factor

    Full text link
    The finite nuclear-size effect on the leading bound-electron g factor and the one-loop QED corrections to the bound-electron g factor is investigated for the ground state of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Z\alpha\ (where Z is the nuclear charge and \alpha\ is the fine structure constant) and for the Fermi model of the nuclear charge distribution. In the result, theoretical predictions for the isotope shift of the 1s bound-electron g factor are obtained, which can be used for the determination of the difference of nuclear charge radii from experimental values of the bound-electron g factors for different isotopes

    Effect of a strong laser field on e+e−e^+ e^- photoproduction by relativistic nuclei

    Full text link
    We study the influence of a strong laser field on the Bethe-Heitler photoproduction process by a relativistic nucleus. The laser field propagates in the same direction as the incoming high-energy photon and it is taken into account exactly in the calculations. Two cases are considered in detail. In the first case, the energy of the incoming photon in the nucleus rest frame is much larger than the electron's rest energy. The presence of the laser field may significantly suppress the photoproduction rate at soon available values of laser parameters. In the second case, the energy of the incoming photon in the rest frame of the nucleus is less than and close to the electron-positron pair production threshold. The presence of the laser field allows for the pair production process and the obtained electron-positron rate is much larger than in the presence of only the laser and the nuclear field. In both cases we have observed a strong dependence of the rate on the mutual polarization of the laser field and of the high-energy photon and the most favorable configuration is with laser field and high-energy photon linearly polarized in the same direction. The effects discussed are in principle measurable with presently available proton accelerators and laser systems.Comment: 21 pages, 4 figure

    Implementing nonlinear Compton scattering beyond the local constant field approximation

    Full text link
    In the calculation of probabilities of physical processes occurring in a background classical field, the local constant field approximation (LCFA) relies on the possibility of neglecting the space-time variation of the external field within the region of formation of the process. This approximation is widely employed in strong-field QED as it allows to evaluate probabilities of processes occurring in arbitrary electromagnetic fields starting from the corresponding quantities computed in a constant electromagnetic field. Here, we demonstrate in the case of nonlinear single Compton scattering that the LCFA is quantitatively and qualitatively insufficient for describing the low-energy part of the emitted photon probability. In addition, we provide a simple recipe to implement an improved expression of the photon emission probability beyond the LCFA in numerical codes, which are an essential tool to interpret present and upcoming experiments in strong-field QED.Comment: 12 pages, 3 figur

    Dominant Secondary Nuclear Photoexcitation with the X-ray Free Electron Laser

    Full text link
    The new regime of resonant nuclear photoexcitation rendered possible by x-ray free electron laser beams interacting with solid state targets is investigated theoretically. Our results unexpectedly show that secondary processes coupling nuclei to the atomic shell in the created cold high-density plasma can dominate direct photoexcitation. As an example we discuss the case of 93m^{93m}Mo isomer depletion for which nuclear excitation by electron capture as secondary process is shown to be orders of magnitude more efficient than the direct laser-nucleus interaction. General arguments revisiting the role of the x-ray free electron laser in nuclear experiments involving solid-state targets are further deduced.Comment: 6 pages, 2 figures; v2 updated to published version; results unchange

    Improved local-constant-field approximation for strong-field QED codes

    Get PDF
    The local-constant-field approximation (LCFA) is an essential theoretical tool for investigating strong-field QED phenomena in background electromagnetic fields with complex spacetime structure. In our previous work [Phys.~Rev.~A~\textbf{98}, 012134 (2018)] we have analyzed the shortcomings of the LCFA in nonlinear Compton scattering at low emitted photon energies for the case of a background plane-wave field. Here, we generalize that analysis to background fields, which can feature a virtually arbitrary spacetime structure. In addition, we provide an explicit and simple implementation of an improved expression of the nonlinear Compton scattering differential probability that solves the main shortcomings of the standard LCFA in the infrared region, and is suitable for background electromagnetic fields with arbitrary spacetime structure such as those occurring in particle-in-cell simulations. Finally, we carry out a systematic procedure to calculate the probability of nonlinear Compton scattering per unit of emitted photon light-cone energy and of nonlinear Breit-Wheeler pair production per unit of produced positron light-cone energy beyond the LCFA in a plane-wave background field, which allows us to identify the limits of validity of this approximation quantitatively.Comment: 15 pages, 3 figure

    QED calculation of the nuclear magnetic shielding for hydrogen-like ions

    Full text link
    We report an ab initio calculation of the shielding of the nuclear magnetic moment by the bound electron in hydrogen-like ions. This investigation takes into account several effects that have not been calculated before (electron self-energy, vacuum polarization, nuclear magnetization distribution), thus bringing the theory to the point where further progress is impeded by the uncertainty due to nuclear-structure effects. The QED corrections are calculated to all orders in the nuclear binding strength parameter and, independently, to the leading order in the expansion in this parameter. The results obtained lay the ground for the high-precision determination of nuclear magnetic dipole moments from measurements of the g-factor of hydrogen-like ions

    QED theory of the nuclear magnetic shielding in hydrogen-like ions

    Full text link
    The shielding of the nuclear magnetic moment by the bound electron in hydrogen-like ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g-factor of hydrogen-like ions.Comment: 4 pages, 2 tables, 2 figure

    Determining the carrier-envelope phase of intense few-cycle laser pulses

    Full text link
    The electromagnetic radiation emitted by an ultra-relativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense (I>10^{20}\;\text{W/cm^2}), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly the laser field, include relativistic and quantum effects and are in principle applicable to presently available and future foreseen ultra-strong laser facilities.Comment: 4 pages, 2 figure
    • …
    corecore